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Introduction

In a networked environment, both vendors and users of insecure software externalize the

costs associated with network failures due to malicious mobile code.  As networked computing

resources become increasingly integrated into society, the expected cost of poor network security

can be expected to increase super-linearly.  Currently, software vendors are entitled to develop

software containing security flaws without fear of legal repercussions.  The lack of legal remedies,

coupled with market flaws, does not tend to encourage vendors to produce more secure software.

Overview

This paper focuses primarily on one aspect of the network security problem, specifically

the so-called buffer-overflow vulnerability.  The paper is divided into three main sections.  The

first provides a technical description of the buffer overflow exploit, together with an overview of

the exploit’s past impacts and future risks.  The next section explores potential solutions to the

problem in the context of an abstract legal framework.  The final section recommends a publicly

enforced standards-based approach to reduce the number of initial software security defects.

Additionally, strict liability for un-repaired defects in deployed software, cushioned by near-term

immunity, will force vendors to move to alternate methods of software distribution. 

Buffer Overflow Vulnerabilities and Exploits

All modern computers are stored program computers, that is, the instructions that make up

a given program are stored in the computer memory alongside the data that the program will

operate upon.  This feature gives computers incredible flexibility in that they can simulate other

kinds of machines.  In other words, a stored program computer is a machine that can become
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another machine described by the program that it currently executes.  A program can be thought of

as a description of a machine; a computer executing that program implements or instantiates that

machine.  It is this chameleon-like quality of the stored program computer that enables the buffer

overflow attack.  The goal of a buffer-overflow attack is to hijack the operation of a running

computer.  If, somehow, the attacker can "inject" code into a running program, they can assume the

identity of that program.  The attacker has two objectives: first, they need to inject a sequence of

instructions into the memory space of a program, and second, they need to get the CPU to start

executing those instructions.  Unfortunately, in many cases, this is easier than it sounds.

Achieving the first objective simply requires a means to input rogue instructions into the

computer’s memory.  Since all interesting computer programs perform input, there appear ample

opportunities to do this.  Consider a program that first reads a username from a terminal into

computer memory during a log-on procedure.  Rather than inputting a user name, the attacker

simply inputs the characters that correspond to the instructions they wish to have executed.  These

characters are typically read into a region of memory - called a buffer - for later processing, such as

comparing the username to the database of account records.  Once the instructions are read into

memory by the computer, the attacker has successfully achieved the first goal of her attack.

At this point, the attacker has only injected malicious code into a data buffer managed by

the running program.  Without making the CPU execute those instructions, the program is not in

danger.  Getting the CPU to do this requires a small digression into the organization of a typical

computer memory.  Generally, a computer memory is logically comprised of (at least) two regions

(sometimes called segments): a text segment, which contains instructions, and a stack segment,

used to hold data that the program operates upon.  In our example, the data buffer that contains

malicious instructions is located in the stack segment.  Diagram 1, below, illustrates the layout of a

computer's memory, just before a buffer overflow attack takes place.  It shows portions of both the
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text segment and the stack segment, together with their contents.  The text segment is labeled with

a human readable version of the binary instructions that would reside there.  

Diagram 1: Just Before the Buffer Overflow Attack.

The key to getting the CPU to execute the malicious code that the attacker will inject into the

program lies in overflowing the input buffer and overwriting critical data adjacent to that buffer.

In this example, the buffer resides in five sequential memory cells, starting at address 100.  In the

105th cell is the so-called return address, which is the address of the instruction the CPU will

execute after it finishes reading input from the user.1  

Now, suppose that the attacker can input just the right sequence of characters that not only

fills the buffer with malicious instructions, but also ultimately overflows that buffer and overwrites

the return address that lies adjacent to it.  The value used by the attacker to overwrite the return

1 Return addresses are stored in the stack segment in order to implement procedure (subroutine)
calls within programs.  Saving the return address enables the continued execution of a program
after a subroutine finishes executing.  
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address is the address of the beginning of the buffer, because that is where the first malicious

instruction lives.  Note that the input reading routine, when it finishes, fetches an address

contained at memory location 105, and continues by executing the instruction located at that

address.  Generally, that will be the address of an instruction in the "real" program, but in this case,

the attacker has overwritten it with the address of the first instruction of their instruction stream.

Diagram 2, below, illustrates the situation in computer memory just after the buffer overflow has

taken place.  The changes have been emphasized in italics.

Diagram 2: Just After the Buffer Overflow

In this example, once the attacker has input her carefully constructed input sequence that

overflows the buffer, control will be passed to her code, and she will now assume the identity and

rights of the running program. This means that if the program is running at a level of elevated

privilege, she - or rather the program, as her proxy - will not only be able to read, modify, or even
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destroy files belonging to ordinary users, but also have control over privileged data within the

system, such as password files.

Worms:  Exploiting Buffer Overflow Vulnerabilities in a Networked Environment

In modern times, computers operate in a highly networked environment populated by client

and server programs.  Network connections provide a channel through which hackers can launch

attacks by means of buffer overflows, or other vulnerabilities.  The connectivity afforded by

networks, coupled with the automation afforded by programmatic attacks, allow hackers to write

self-replicating worms that spread across the Internet, overtaking one server after another.

Assuming that the original code continues attacking other servers, it is easy to see that most worms

will rapidly (geometrically) take over large numbers of machines.  As we shall see below, these

worm-driven, automated attacks can spread across the Internet in a pattern similar to that of an

infection through biological populations.  

The potential scale of an epidemic increases with a number of factors: the number of hosts

on a particular network, the number and kinds of services running on each host, the number of

security vulnerabilities, and the homogeneity of software and hardware.  The number of connected

hosts obviously describes an upper limit on the reach of the infection.  Obviously, the degree of

connectivity itself varies from host to host, depending on the number and kinds of services running

on that host.  A home machine, for example, will typically run fewer services than a corporate

machine that handles e-mail, file-transfer, printing and so on.2  The number of security

vulnerabilities serves to constrain the channels through which infections can spread.  While it is

2 Of course, many systems are commonly shipped with unnecessary services enabled.  For
example, Microsoft IIS (the Microsoft web server) is enabled by default on standard installations
of Windows 2000.  As most home users will never have a need to run their own web server, and
since Internet worms commonly target IIS, shipping systems with IIS disabled by default is
perhaps the cheapest way to avoid the risk of a large class of infections.
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easier said than done, eliminating all vulnerabilities will eliminate potential epidemics.  As we

shall see below, however, it may be possible to eliminate a broad class of vulnerability (in this

case, buffer overflows) and sharply reduce the network's susceptibility to infection.  

Finally, the homogeneity of the network plays an important role. A single worm can only

successfully attack a single combination of software, operating system, and machine architecture.3

Hence, the hacker’s workload increases with the number of platforms.  Of course, a world where

the number of kinds of platforms equals the number of hosts may be inconceivable, but a dozen

combinations is not out of the question.4  The lesson here is that there is a strong analog between

cyber-diversity and bio-diversity: just as mono-cultural agriculture is more susceptible to

devastating insect or fungal attack, so is a monoculture of computer systems.5 

Some Famous Worms in History

The grandaddy of all worms is the Morris worm of November 1988. This worm spread

through a variety of mechanisms, but in large part relied on a buffer overflow vulnerability in the

finger daemon, a UNIX server that provides information regarding users on its host machine. In

3 This is so because if an attacker discovers a buffer overflow vulnerability in one version of a
particular server (e.g. a web server written by vendor X, version Y, for operating system Z), they
can compromise all machines on the network that are running that particular version of the web
server.  The reason is that the code and data layout will be identical across all identical versions of
software running on binary-compatible hardware, with the same operating system.  There are
worms that can attack multiple platform combinations, but these can really be viewed as N
separate worms, one each per platform.

4 Just two to three vendors each of hardware, software, and operating system should yield eight to
27 possible combinations.

5 This observation was made as early as 1988 in the aftermath of the highly publicized worm, the
Morris Worm.  “Diversity is good.  Though the virus picked on the most widespread operating
system use on the Internet and the two most popular machine types, most of the machines on the
network were never in danger. A wider variety of implementations is probably good, not bad.
There is a direct analogy with biological diversity to be made.”  Mark Eichin & Jon Rochlis, With
Microscope and Tweezers:  An Analysis of the Internet Virus of November 1988, IEEE
Symposium on Research in Security and Privacy (1989), available at
http://www.mit.edu/people/eichin/virus/main.html. 
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1988, the Internet consisted only of 60,000 hosts, yet the worm managed to infect between 1000

and 6000 of them in a matter of hours. Dollar losses were estimated to run between $100,000 and

$10 million.6 In July of 2001, the Code-Red family of worms made its rounds and infected

360,000 hosts.  The worm’s population doubled every 37 minutes, adding 2000 new hosts per

minute at its peak.  This worm exploited a buffer overflow vulnerability in the Microsoft IIS (web-

server) and cost businesses an estimated $2.6 billion.7  In January of 2003, the SQLSlammer worm

exploited a buffer overflow vulnerability to attack the Microsoft SQL Server.  The Slammer worm

was exceptionally virulent, infecting 75,000 hosts in just 15 minutes.8 The worm’s population

doubled in size every 8 seconds; at it's peak, the worm scanned 55 million hosts per second.

While the Slammer didn't actually destroy data, it did disrupt the operation of the database server

and the network itself, resulting in ATM crashes, flight cancellations, and 911 disruptions.9 The

Slammer racked up $1 billion in damages by the time the dust had settled.10  

6 U.S. General Accounting Office, Computer Security:  Virus Highlights Need for Improved
Internet Management (June 1989), http://www.worm.net/GAO-rpt.txt. 

7 David Moore et al., Code-Red: A Case Study on the Spread and Victims of an Internet Worm
(2002), http://www.caida.org/outreach/papers/2002/codered/.

8 Such highly virulent worms are called “Warhol” worms because of their ability to infect most or
all targets in a matter of minutes, giving truth to the artist’s adage, “In the future, everyone will
have 15 minutes of fame.”  Stuart Staniford, Vern Paxson & Nicholas Weaver, How to Own the
Internet in Your Spare Time, Proceedings of the 11th USENIX Security Symposium (2002),
available at http://www.icir.org/vern/papers/cdc-usenix-sec02/cdc.web.pdf.  

9 David Moore et al., Inside the Slammer Worm (2003),
http://www.caida.org/outreach/papers/2003/sapphire2/.

10 Robert Lemos, Counting the Cost of Slammer (January 31, 2003), http://zdnet.com.com/2100-
1104-982955.html.
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Annually, computer security breaches result in tens of billions of dollars of damage.11

Worms - particularly worms that spread through buffer overflow vulnerabilities - are clearly not

the only threat to computer security, yet they comprise a significant portion of the annual damage.

Costs related to security breaches include the service disruptions, data destruction, time and effort

required to recover compromised systems and purchase, install, and apply countermeasures and

patches.  For many organizations and home users, the cost of keeping up with, understanding, and

applying the parade of patches that vendors release is significant.  

Finally, it cannot be underemphasized that worms such as Code-Red and SQLSlammer

caused damage only because they brought machines and networks to their knees.  It would have

been trivial for a hacker skilled enough to write such a worm in the first place to add a few more

lines of code to delete the fixed disks on the machines they infected.  In such cases, damages

would have increased by one or more orders of magnitude.  Moreover, as the number and

connectivity of computers increases, and as society becomes increasingly reliant upon them, it is

clear that the potential for large-scale disaster increases dramatically.12

Eliminating Buffer Overflow Vulnerabilities

Buffer overflow vulnerabilities comprise a significant portion of the known vulnerabilities

listed in public databases.13  There are a number of techniques that can be used to eliminate or

11 Yochi Dreazen, Workplace Security, 9/29/03 Wall St. J. R4 (estimating cost to businesses of
worm and virus attacks $17 billion).

12 A simple formal model for understanding networked risk is developed in Appendix A.  The
intuition behind it has been expressed before the terrorist attacks of September 11, when President
Clinton’s terrorism czar, Richard Clarke observed the dangers of cyber terrorism:  "I'm talking
about people shutting down a city's electricity, shutting down 911 systems, shutting down
telephone networks and transportation systems. You black out a city, people die. Black out lots of
cities, lots of people die. It's as bad as being attacked by bombs.”  Quoted in Tim Weiner, The
Man Who Protects America From Terrorism, 2/1/99 N.Y. Times A3.

13 Buffer overflow vulnerabilities account for roughly one third of the total number listed in the
CERT Vulnerability Database, http://www.kb.cert.org/vuls (337 out of 955, by the author’s count
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reduce the number of buffer overflow vulnerabilities in a given piece of software. At one extreme

lie solutions that rely upon using “safer” implementation languages.  The most commonly used

programming language, C, not type safe -- that is, abuses of data such as buffer overflows are not

guarded against.  Modern programming languages such as Java are guarantee type safety, meaning

that they attempt to detect such abuses either at compile time, run time, or both.  While programs

implemented in a type safe language can be said to be “immune” to the buffer overflow exploit,

unless the programmer has explicitly handled the error condition, such programs will still

terminate when an abuse of data (such as an over-long input) is discovered at run time.

Termination with a meaningful error not a perfect solution, but at least such programs are not

subject to being “hijacked” in the same manner as the equivalent C program.  Of course,

guaranteeing type safety comes at a cost, and consequently a program written in Java will tend to

run slower than the equivalent program written in C or C++.14  To the vendor who has a large,

existing code base, the cost is that of rewriting all or much of their software in another

programming language.  Clearly, this might represent a monumental effort for some vendors,

resulting in years of re-engineering effort.   

Given that a vendor may be reluctant to use a language-based approach, engineering

process-based solutions will at least help curb the problem.  Code audits can flag potential buffer

overflow problems in an existing C/C++ code base.  These audits can be to some extent

automated.15  Potential weaknesses can then be carefully considered and possibly re-coded.  Many

in November, 2003).

14 While a program that runs 10 times slower seems bad, recall that the underlying hardware runs
about 10 times faster every 5 or 6 years.

15 David Evans & David Larochelle, Improving Security Using Extensible Lightweight Static
Analysis, January/February 2002 IEEE Software 42.
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organizations implement human code reviews as part of their engineering process.  However, as

deadlines loom, code reviews tend to lose out to the allure of running code.

Finally, there are dynamic techniques that are based on modifications to the C or C++

runtime system, which can catch large classes of buffer overflow exploits. The overhead of such

solutions is typically under 10% on benchmark programs.16  Of course, the advantage of such

solutions is that they simply require a recompilation of existing C programs, which is a trivial task

compared to re-implementing the entire program in a new language.  

Legal Framework

Having established that buffer overflows are a substantial source of costs external to the

software industry, we turn now to the question of whether and how best to distribute these costs.

The protected entitlements model, pioneered by Calabresi and Melamid, provides a useful

framework.17  Here, the entitlement centers on the presence or absence of security defects in

software:  first, an entitlement to a secure software system, and second, an entitlement to ship

insecure software.  Under the model, entitlements can be protected either by liability rules or

property rules.  Entitlements protected by property rules can only be taken if the taking party

agrees to the entitled party’s asking price.  Entitlements protected by liability rules can be taken,

but the (formerly) entitled party must be compensated for their loss.  Applying each type of rule to

each entitlement yields four combinations:

1) An entitlement to secure software protected by a property rule.  Selling insecure software is

viewed as  “nuisance.”  The vendor cannot sell insecure software unless the consumer allows

16 Crispin Cowan et al., Buffer Overflows:  Attacks and Defenses for the Vulnerability of the
Decade, Proceedings of DARPA Information Survivability Conference and Expo (1999),
http://www.cse.ogi.edu/~crispin/discex00.pdf. 

17 Guido Calabresi & A. Douglas Melamid, Property Rules, Liability Rules, and Inalienability:
One View of the Cathedral, 85 Harv. L. Rev. 1089 (1988).
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it.  Consumers can enjoin the vendor, but the vendor can of course negotiate with consumers

and “pay” them to accept insecure software.

2) An entitlement to secure software protected by a liability rule. The vendor may sell insecure

software, but must compensate the consumers for damages that result.

3) An entitlement to ship insecure software protected by a property rule.  Selling insecure

software is not viewed as a “nuisance.”  Consumers can only stop the vendor from selling

such software by paying the vendor not to sell it.  This combination represents the status quo.

4) Entitlement to ship insecure software protected by a liability rule.  Consumers can enjoin the

vendor from shipping insecure software, but must pay damages to the vendor.  

Property Rules

Calabresi and Melamed teach that in the realm of property rules, when we are certain that

one party is the cheapest cost avoider, we should grant the entitlement to the opposite party.  In the

instant case, the entitlement has been assigned to the wrong party -- the software vendors.  It lies

with the wrong party because at least with respect to the buffer overflow problem in particular, and

software internal security flaws in general, they are the cheapest - indeed, the only - cost avoider.

As long as software is only shipped in binary format, the consumer has no ability to secure the

defective software.  Of course, the Coase Theorem tells us that even if we are wrong in assigning

the initial entitlement, the parties ought to be able to negotiate an economically efficient result.18

Here, that would mean that instead of avoiding the costs on their own, consumers would negotiate

with vendors and pay them to produce secure software.  Since the vendors are the cheapest cost

avoider, the result will be economically efficient, because there must be some price between the

value of secure software to users and the cost of producing secure software to vendors that will

result in the delivery of secure systems.
18 Ronald Coase, The Problem of Social Cost, 3 J. Law & Econ. (1960).
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Unfortunately, the Coase theorem assumes zero transaction costs between the parties.

Given that we live in a world where vendors are entitled to produce insecure software, there are no

practical means by which consumers can, without more, collectively negotiate with the vendor to

give up the entitlement.  In contrast to the example of air pollution, the problem of insecure

software is significantly more global.  It is not just a matter of getting those who live near a pig

farm together and hashing out what they would be willing to pay the farmer to stop raising pigs.

Here there are millions of different users distributed around the world, many of whom will place

starkly different prices on the value of security, giving rise to free-rider problems.

Given that there exist high transaction costs and hence no cheap way for consumers to

negotiate for more secure software with vendors, we should see consumers doing the next best

thing to obtain a secure system.  This process is evidenced by the growth of the “security

industry,” which broadly speaking sells services and products to improve computer security.  In

many ways, however, the security industry is like the cold-remedy industry during flu season.  The

right thing of course might be for everyone to receive vaccinations, but since this doesn’t happen,

there exists an after-market for remedies.  These remedies don’t cure the problem, they just make

people feel better after they have gotten ill.  Anti-virus software and patches generally only fix

problems once they are known.  They clean up systems that are already broken, possibly after

significant damage has occurred.  Firewalls are only effective insofar as they protect a computer

from incoming network connections to nonstandard ports.  They will not, without more, protect an

organization’s web-server from a buffer overflow attack, because the server’s very job is to accept

connections on a particular port, and therefore the firewall must allow such connections to pass

through.  

Given that after-market security remedies haven’t solved the problem, it is still not

immediately clear why a market-based approach might not solve the problem without moving the
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entitlement from its current place.  In other words, different vendors ought to be able to compete

on the basis of security features in the same manner that they would and do compete on the basis

of any other features.  Vendor X might advertise the technological countermeasures it has adopted

in order to assure users that its software achieves a high standard of security.  Vendor Y might

make no representations about its software aside from the fact that it costs half as much as that

from X.  Consumers should then be able to choose whether they want software that is cheap and

maybe dangerous or pricey and probably safer.19  

At the surface, the reason the market hasn’t solved the problem of internal security holes

relates to lock-in and a near monopoly in the home operating systems market.20  Over 90% of

home users use a Microsoft operating system.  Single vendors strategically design different

software packages to interoperate with their own packages, but then hide the relevant interfaces

that could enable other vendors to step in and offer competing products.  Moreover, as long as

installing software is a nontrivial task for home users, the cost of switching to software packages

that did not ship with their machine remains relatively high.  As long as there is no real

competition (or the barrier to entry to competition remains unreasonably high), the market won’t

yield more secure software because there is simply no incentive to do so.  

But the issue is deeper still.  Even in a market with no barriers to entry to competitors and

no switching costs to consumers, the simple fact that some vendors will create low-security

products means that those consumers who purchase those offerings will be able to externalize the

costs of their own poor security.  Poor security gives rise to at least two separate risks:  one to the

19 See e.g. Michael Rustad & Lori Eisenschmidt, The Commercial Law of Internet Security, 10
High Tech. L.J. 213 (1995) (favors adopting UCC Article 2B to provide a framework for clarifying
contract law with respect to software licensing, to give vendors and consumers the ability and
freedom to allocate liability among themselves).

20 Dan Geer et al., CyberInsecurity:  The Cost of Monopoly (2003),
http://www.ccianet.org/papers/cyberinsecurity.pdf.
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internal integrity and operation of a computer system, and another to the external availability of the

network.  While buying expensive, higher security software may better protect data resident on a

consumer’s machine, it will do nothing to guarantee the availability of the network, because all of

the consumers who have bought low security software provide attackers ample opportunity to clog

up the operation of the network for, or even launch denial of service attacks against users who are

running secure software.  The Internet is subject to the tragedy of the commons, where a relatively

small number of insecure and misbehaving hosts can seriously degrade a public good.21  The

Slammer worm demonstrates this principle:  even though it only affected 75,000 hosts, it caused

disruptions for millions of hosts on the Internet.  

Finally, this insight explains why neither of the property rule combinations is sufficient in

this situation.  Currently, those who desire secure systems cannot possibly purchase the entitlement

from the vendors, because as long as there are vendors who produce low security software, there

will be users who choose to externalize the cost of their choices.  And if the entitlement were

moved to the users, it seems likely that for the right price, some users might still choose trade the

entitlement by accepting software with poor security, again externalizing those costs.  Moreover,

the enforcement costs seem unmanageable.  How could the courts enjoin potentially millions of

users running low security systems?  Of course, they would focus their energies upon the vendors

of such systems, but even this is no easy task.  For in contrast to the case of a pig farm - where the

“problem” is obvious to anyone with a nose - the very act of deciding what comprises “poor”

security is very difficult.  In the limited case of the buffer overflow problem, it may be possible to

make some pre-sale judgment about the relative security of two offerings, but in the general case,

where the total security of a system depends on many factors - both social and technological - this

sort of judgment is difficult to make until the software has spent some time in the field. 

21 Garrett Hardin, Tragedy of the Commons, 162 Science 1243 (1968).  
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Liability Rules

The second option suggested by the model is to move the entitlement to the consumer, and

to protect it with a liability rule.  Under this approach, consumers would be able to sue vendors for

damages caused by security flaws in their software.  Subclasses of this approach have been treated

extensively in several academic papers.22  Primarily, they focus on shoehorning the issue into one

of the traditional private causes of action in tort.  Rather than dissect each of the offerings in detail,

it should suffice here to make observations that are general to all of them.  

First, these approaches all suffer from high administrative overhead:  finding and valuing

the damage to all of the injured parties is difficult, because the current pattern of damage for

Internet worms is to widely distribute a relatively small amount of harm.  In a way, this would

seem to be an ideal arena for mass tort litigation, because the costs of bringing the action by an

individual consumer dwarf the damage they seek to recover.  At present, adjudicating a mass tort

in this arena will be difficult as long as the standard of due care and the tort defenses will vary

widely over the many jurisdictions covered by the class.23   Moreover, in a future inhabited by

increasingly malicious worms that actually destroy data, the quantity of damage will vary greatly

between individual users, making it perhaps even more difficult to accurately assess damages.

22 Kevin Pinkney, Putting Blame Where Blame Is Due:  Software Manufacturer and Customer
Liability For Security-Related Software Failure, 13 Alb. L.J. Sci. & Tech. 43 (2002) (suggesting
strict liability for vendors with defense of contributory negligence for users who fail to patch); Erin
Kenneally, Stepping On The Digital Scale:  Duty And Liability For Negligent Internet Security,
Ann. 2002 ATLA-CLE 403 (suggesting imposition of duties upon vendors, service providers, and
end-users, with the scope of the duty depending upon which party is best positioned to implement
safeguards); Patrick T. Miyaki, Computer Software Defects: Should Computer Software
Manufacturers be Held Strictly Liable for Computer Software Defects, 8 Santa Clara Computer &
High Tech. L.J. 121 (1992) (arguing against liability due to negative economic impacts on the
software industry). 

23 Robin Brooks, Deterring the Spread of Virus Online:  Can Tort Law Tighten the Net?, 17 Rev.
Litig. 343 (1998). 
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The second problem relates to potentially disastrous distributional effects of such a policy.

In short, the cost of making a single mistake may be sufficient to drive a vendor out of business.

With other modern technologies, such as railroads and airplanes, the potential damage caused by a

single incident tends to be isolated and relatively much cheaper than the total benefit of the

technology.24  In the case of computing technology in a networked environment, however, the

potential impact of failing to catch even a single buffer overflow vulnerability is the total failure of

the network, with costs ranging into the billions of dollars.  And as we have seen, in the

foreseeable future, the costs could even include the loss of life on a large scale.  Damages of this

magnitude seem uninsurable and far beyond the capability of any vendor to pay.    The reason is,

of course, that the very qualities that make the Internet such a valuable resource - cheap and

extensive connectivity - are the same qualities that allow a single hacker to bring it to its knees.  

The last option suggested by Melamid and Calabresi is leaving the entitlement where it is,

but protecting it with a liability rule.  This would mean that if someone takes the entitlement, they

would have to pay the vendor damages, presumably the cost to repair the software.  An obvious

way to implement such a solution would be for the government to step in, force companies to

improve their security, but then pay them to make the improvements.  The costs would then be

distributed, presumably amongst the parties who benefit, via a tax of some sort.  One nice thing

about this is approach is that it is easier to calculate damages and bring the relevant parties to the

table, when compared to the other liability rule.  It also has the admirable distributional effect that

it will tend to keep companies in business.  However, it doesn’t really provide the right incentive:

at the extreme, a company can keep making defective software while someone else foots the bill

for fixing it.  

24 Of course the events of 9/11 have upped the ante, with an order of magnitude increase in loss of
life, coupled with the lingering, hard to calculate damages to the air travel industry in particular,
and economic confidence in general.
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Recommendation: 

The suggested strategy is for a joint public and private process to create and publish a set of

standards that provide a bright line rule for what it means for a vendor to develop secure

software.25  These standards will surely contain a mix of sophisticated automated tools or

benchmarks together with engineering process requirements.26  Automated tools can be used to

perform sophisticated code audits at relatively low cost to those vendors who continue to use

technologies that are susceptible to buffer overflow problems, such as C or C++.    An agency

administered civil penalty mechanism will enforce the standards against vendors who fail to

follow them.  Amazingly, even very small per-license penalties will quickly amount to very large

awards.27  Public funding, recouped through a software tax and penalties gathered through the

enforcement program will be used to develop improved tools and processes.  Finally, tax

incentives can be used to encourage companies to start adopting implementation technologies that

are demonstrably safer.

The above proposal should serve to significantly reduce the number of security holes,

especially in the realm of something like the buffer overflow problem.  In addition it has numerous

benefits not found in a private enforcement scheme based simply upon a common law tort.  First,

the rules have bright lines.  The advantage of setting standards is of course that it reduces the cost

of compliance by engineers before the fact and administration of the law after the fact.  The cost of

compliance is relatively low; the penalties for not doing so are high and relatively straightforward

25 The Food and Drug Administration already attempts to minimize software defects by requiring a
formalized development processes together with design validation to help assure that the finished
product works as intended.  21 CFR 820 (1996).  See also Food and Drug Administration, General
Principles for Software Validation (2002), http://www.fda.gov/cdrh/comp/guidance/938.pdf 

26 See e.g. Nancy Leveson, Safeware: System Safety and Computers (1995).

27 Arguably, the penalty structure should track the nonlinear nature of damage in a networked
environment to better reflect the amount of actual damage done.
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for a court to apply.  Second, the knowledge (better processes and better tools) generated through

the public research component remains in the public domain.  This is an acknowledgement that

network security is a public good, and techniques to help guarantee it ought to remain public.  In

contrast, in a private scheme, every company is forced to develop or purchase this kind of

knowledge, and keep it secret for fear of losing what has become a competitive advantage.  Third,

such a policy will effect a change of culture within the software development houses, where the

pressure to market often plays a major role in determining the order in which known defects are

fixed.  Gone will be the day, hopefully, where known security holes receive lower priority to the

latest features demanded by the marketing or sales department.  Finally, by paying out bounties to

hackers who discover and report security holes (which should have been caught by a company

complying with the standards), this scheme may create incentives for hackers to perform socially

beneficial work.

While this proposal should reduce the number of security defects, it does nothing to solve

the problem of fixing deployed software after defects are discovered.  As long as the parade of

patches approach remains the preferred or only method of fixing software in the field, known

defects will remain a popular avenue for attack.  In many ways, this second problem - fixing

defects in the field - is more vexing than that of improving the initial quality of software.  Solving

this problem calls perhaps for a radically new - or old - model of software distribution.  In a world

where home computers contain little or no software, software will be dynamically and

transparently downloaded every time it is run.  Since software only resides on a relatively small

number of servers, patching software becomes a manageable problem.  Ironically, this architecture

is not too different from the centralized computing resources accessed by dumb terminals of the

1960s and 70s.  Moving to such a model of computing may require something of a sea change in

the industry, and will certainly take longer than improving initial software quality.  Under this
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policy, industry would be encouraged to make the transition by phasing in - after a period of years

- an increasing measure of strict liability for unfixed software in the field.  Given the difficulty of

eliminating every potential security hole, many vendors ought to decide to avoid liability simply by

changing their model of software distribution.  Again, the program will provide for funding to

research new architectures, or perhaps to relearn the lessons of old.28

In summary, the approach has two phases.  Initially, a standards-based approach attempts

to improve the situation in the short term, by forcing vendors to make building secure software a

top priority, but forgiving them for defects that could not have been captured under the current

state of the art.  Ultimately moving to strict liability for unfixed, deployed defects acknowledges

that improved engineering process and technology will never fix every problem, and creates a

powerful incentive to develop alternate models of software distribution.  Vendors can trivially

escape liability under such a regime by never (permanently) deploying software.

Conclusion

The general case of computer security is a complicated problem.  The complicated nature

of the problem is no reason, however, not to attempt to engineer a coherent solution.29  This paper

has sketched a potential solution for the limited and fairly well understood problem of buffer

overflow vulnerabilities.  Improved security in the general case is of course more than improved

technologies, meaning that more work will be required to in other areas.

28 See also Stephanie Forrest et al., Building Diverse Computer Systems, 6th Workshop on Hot
Topics in Operating Systems 67 (1997) (presenting an alternative to the above model by taking
lessons from biodiversity seriously and attempting to build software not subject to the one-attack-
fits-all problem plaguing current systems).

29 A “Gee whiz, it’s a big job” attitude seems even to have infected Amit Yoran, Cybersecurity
Czar, when he states:  “In concept, [holding software vendors liable] may make sense.  But in
practice, do they have the capability, the tools to produce more secure code?” David Bank, Tech
Executives Try to Ward Off Security Rules, 12/3/03 Wall St. J. B5.

19



Finally, there remains a danger that we have not been asking the right question.  Perhaps

rather than asking whether and how to best shift the cost of security flaws, we should ask whether

we, as a society, are willing to live with those costs, regardless of the benefits.  Perhaps nuclear

energy is an apt analogy:  a technology with the promise of an endless supply of electricity but at

the potential cost of terrible environmental disaster.  In some nations, the people have decided that

they would prefer not to live with those risks, regardless of how remote the risks and grand the

benefits may be on paper.  As computer technology becomes increasingly fast, embedded and

connected, network failures will surely mean terrible things.  At some point, merely deciding who

should bear the cost of these terrible outcomes doesn’t do justice to the deeper issue, which is

whether we even want to live in a world where these remote-sounding risks of massive failure

become reality.  Complex, integrated technical systems tend to fail spectacularly.  Often lost in the

discussion is the fact that we are the ones in ultimately charge of building those systems, and

maybe the answer to the question is that if there is no guarantee that there will be no spectacular

failures, then we don’t want them to get any more complicated, even if there exists a system for

recovering the damages.30 

 

30 Perhaps the most controversial expression of this viewpoint is found in Theodore Kaczynski,
The Unabomber Manifesto §172 (1995), http://hotwired.wired.com/special/unabom/list.html.
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Appendix A:  A Simple Risk Model for Thinking About Network Insecurity

Risk is characterized as the probability, P, of an incident times the cost, C, of the

consequences. R = PC.  Metcalfe’s law holds that the value, V, of a network increases with the

square of the number of hosts, N, on the network. V = N2.  While this law is typically called upon

to explain the benefits of a networked environment, it surely has a corollary, which is that the cost

of a network failure, C, also increases with the square of the number of hosts, N, on the network.

This is just common sense, for everything given by the network effect must also be capable of

being taken away.  C = N2.  Now substituting, we see that in a networked environment, risk can be

expressed as the probability of an incident times the number of hosts.  R = PN2.  This supports the

intuition that the amount of damage caused by malicious mobile code will increase dramatically as

the size of the network grows.  

Next, we know that as software grows, the complexity of software increases by a square of

the number of lines of code.  The probability of a security hole (directly related to the probability

of an incident) is directly proportional to the complexity of the software.  Hence, P = kL2, where L

is the number of lines of code, and k is a constant factor relating the probability of a security hole

to the probability of an incident.  Now we again substitute into the risk model, yielding: 

R = k L2 N2

In English, this says that risk grows with the square of the size of the program times the

square of the number of hosts on the network.  Assuming 10% growth rates for both software size

and network size, the model predicts that risk doubles roughly every 18 months.  While this model

is subject to much refinement, it provides a rough theoretical basis for understanding the risks

associated with not properly managing the problem presented by network insecurity.
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Appendix B: Total Vulnerabilities and Incidents Listed in the CERT Database.
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